Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(51): E11029-E11036, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203673

RESUMO

Misfolding of tau proteins into prions and their propagation along neural circuits are thought to result in neurodegeneration causing Alzheimer's disease, progressive supranuclear palsy, chronic traumatic encephalopathy, and other tauopathies. Little is known about the molecular processes mediating tau prion replication and spreading in different brain regions. Using transgenic (Tg) mice with a neuronal promoter driving expression of human mutant (P301S) tau, we found that tau prion formation and histopathologic deposition is largely restricted to the hindbrain. Unexpectedly, tau mRNA and protein levels did not differ between the forebrain and hindbrain, suggesting that other factors modulating the conversion of tau into a prion exist and are region specific. Using a cell-based prion propagation assay, we discovered that tau prion replication is suppressed by forebrain-derived inhibitors, one of which is sortilin, a lysosomal sorting receptor. We also show that sortilin expression is higher in the forebrain than the hindbrain across the life span of the Tg mice, suggesting that sortilin, at least in part, inhibits forebrain tau prion replication in vivo. Our findings provide evidence for selective vulnerability in mice resulting in highly regulated levels of tau prion propagation, thus affording a model for identification of additional molecules that could mitigate the levels of tau prions in human tauopathies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Rombencéfalo/metabolismo , Rombencéfalo/patologia
2.
Acta Neuropathol ; 132(4): 593-610, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350609

RESUMO

Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.


Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Proteínas Mutantes/metabolismo , Proteínas PrPSc/metabolismo , Animais , Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/patologia , Camundongos Transgênicos , Doenças Priônicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...